

The DASH Prototype:
Implementation and Performance

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira,
Luis Stevens, Anoop Gupta and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

The fundamental premise behind the DASH project is that it is fea-
sible to build large-scale shared-memory multiprocessors with
hardware cache coherence. While paper studies and software sim-
ulators are useful for understanding many high-level design trade-
offs, prototypes are essential to ensure that no critical details are
overlooked. A prototype provides convincing evidence of the fea-
sibility of the design, allows one to accurately estimate both the
hardware and the complexity cost of various features, and provides
a platform for studying real workloads. A 16-processor prototype
of the DASH multiprocessor has been operational for the last six
months. In this paper, the hardware overhead of directory-based
cache coherence in the prototype is examined. We also discuss the
performance of the system, and the speedups obtained by paraliel
applications running on the prototype. Using a sophisticated hard-
ware performance monitor, we characterize the effectiveness of
coherent caches and the relationship between an application’s ref-
erence behavior and its speedup.

1.0 Introduction

For parallel architectures to achieve widespread usage it is impor-
tant that they efficiently run a wide variety of applications without
excessive programming difficulty. To maximize both high perfor-
mance and wide applicability, we believe a parallel architecture
should provide (i) the ability to support hundreds to thousands of
processors, (ii) high-performance individual processors, and (iii) a
single shared address space.

One important question that arises in the design of such large-scale
single-address-space machines is whether or not to allow caching
of shared writeable data. The advantage, of course, is that caching
allows higher performance to be achieved by reducing memory
latency; the disadvantage is the problem of cache coherence.
While solutions to the cache coherence problem are well under-
stood for small-scale multiprocessors, they are unfortunately not
so clear for large-scale machines. In fact, large-scale machines cur-
rently do not support cache coherence, and it has not been clear
what the benefits and costs will be.

For the past several years, the DASH (Directory Architecture for
SHared memory) project has been exploring the feasibility of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

©® 1992 ACM 0-89791-509-7/92/0005/0092 $1.50

92

building large-scale single-address-space machines with coherent
caches. The key ideas are to distribute the main memory among
the processing nodes to provide scalable memory bandwidth, and
to usé a distributed directory-based protocol to support cache
coherence. To evaluate these ideas, we have constructed a proto-
type DASH machine. The full prototype will consist of sixty-four
33MHz MIPS R3000/R3010 processors, delivering up to 1600
MIPS and 600 scalar MFLOPS. An initial 16-processor prototype
has been working for the past several months, and we are currently
expanding this to the full 64-processor configuration.

This paper examines the hardware cost and performance character-
istics of the prototype DASH system. Cost is measured in terms of
the logic gates and the bytes of dynamic and static memory in the
base system and the added directory logic. Performance is mea-
sured in terms of memory system bandwidth and latency, and in
terms of parallel application speedups. For a representative set of
the measured applications, we also present detailed reference sta-
tistics and relate these statistics to the observed application speed-
ups. Finally, we describe the structure of the performance monitor
logic which was used to take the detailed reference measurements.

The paper is organized as follows. Section 2 gives an overview of
the DASH architecture. Section 3 introduces the DASH prototype
and describes the logic used for the directory-based coherence pro-
tocol. Section 4 details the hardware costs of the system. Section 5
outlines the structure and function of the performance monitor
logic, and Section 6 presents the performance of the memory sys-
tem, and the speedups obtained by paraliel applications running on
the prototype. We conclude in Section 7 with a summary of our
experience with the DASH prototype.

2.0 The DASH Architecture

The DASH architecture has a two-level structure shown in
Figure 1. At the top level, the architecture consists of a set of pro-
cessing nodes (clusters) connected through a mesh interconnection
network. In turn, each processing node is a bus-based multiproces-
sor. Intra-cluster cache coherence is implemented using a snoopy
bus-based protocol, while inter-cluster coherence is maintained
through a distributed directory-based protocol.

The cluster functions as a high-performance processing node. In
addition, the grouping of multiple processors on a bus within each
cluster amortizes the cost of the directory logic and the network
interface. This grouping also reduces the directory memory
requirements by keeping track of cached lines at a cluster as
opposed to processor level. (We will more concretely discuss the
role of clustering in reducing overhead in Section 4).

1stlev
Tand D cac! I k
me o]

of;.-
el
he
d level cache[H E
E ——1|

Figure 1. Block diagram of a 2x2 DASH prototype.

The directory-based protocol implements an invalidation-based
coherence scheme. A memory location may be in one of three
states: uncached, that is not cached by any processing node at all;
shared, that is in an unmodified state in the caches of one or more
nodes; or dirty, that is modified in the cache of some individual
node. The directory keeps the summary information for each mem-
ory line, specifying the clusters that are caching it.

The DASH memory system can be logically broken into the four
level hierarchy shown in Figure2, The level closest to the proces-
sor is the processor cache and is designed to match the speed of the
processor. Arequest that cannot be serviced by the processor cache
is sent to the second level in the hierarchy, the local cluster level.
This level consists of other processors’ caches within the request-
ing processor’s cluster. If the data is locally cached, the request can
be serviced within the cluster, otherwise the request is sent to the
directory home level. The home level consists of the cluster that
contains the directory and physical memory for a given memory
address. For some addresses, the local and home cluster are the
same and the second and third level access occur simultaneously.
In general, however, the request will travel through the intercon-
nect to the home cluster. The home cluster can usually satisfy a
request, but if the directory entry is in the dirty state, or in the
shared state when the requesting processor requires exclusive
access, the fourth, remote cluster level, must be accessed. The
remote cluster level responds directly to the local cluster level
while also updating the directory level.

In addition to providing coherent caches to reduce memory
latency, DASH supports several other techniques for hiding and
tolerating memory latency. DASH supports the release consistency
model, that helps hide latency by allowing buffering and pipelin-
ing among memory requests. DASH also supports software-con-
trolled non-binding prefetching to help hide latency of read
operations. Finally, DASH supports efficient spin locks in hard-
ware and fetch-and-incr/decr primitives to help reduce the over-
head of synchronization. Since we will primarily be focussing on
the basic cache coherence protocol in this paper, we will not

93

Processor Level
Processor cache.

{ Local Cluster Level
Other 5507 caches

within local cluster,

(Directory Home Level b
Directory and main memory
associated with given address.

Remote Cluster Level
t Processor caches in

remote clusters.

Figure 2. Logical memory hlerarchy of DASH.

describe the details of these optimizations. For a more detailed dis-
cussion of the protocol and the optimizations, see [7, 8].

3.0 The DASH Prototype

To focus our effort on the novel aspects of the design and speed
completion of a usable system, the base cluster hardware of the
prototype is a commercially available bus-based multiprocessor.
‘While there are some constraints and compromises imposed by the
given hardware, the prototype still makes an interesting research
vehicle.

The prototype system is based on a Silicon Graphics POWER Sta-
tion 4D/340 as the base cluster [3]. The 4D/340 system consists of
four MIPS R3000 processors and R3010 floating-point coproces-
sors running at 33 MHz. Each R3000/R3010 combination can
achieve execution rates up to 25 VAX MIPS and 10 MFLOPS.
Each CPU contains a 64 Kbyte instruction cache and a 64 Kbyte
write-through data cache. The 64 Kbyte data cache interfaces to a
256 Kbyte second-level write-back cache. The interface consists of
a read buffer and a 4 word deep write-buffer. Both the first and sec-
ond-level caches are direct-mapped and support 16 byte lines. The
first-level caches run synchronously to their associated 33 MHz
processors while the second-level caches run synchronous to an
independent 16 MHz memory bus clock,

The second-level processor caches are responsible for bus snoop-
ing and maintaining coherence among the caches in the cluster.
Since the first-level caches satisfy most memory requests, the sec-
ond-level caches do not need duplicate snooping tags. Coherence
is maintained with a MESI (Illinois) protocol[12], and inclusion of
the first-level cache by the second-level. The main advantage of
using the Illinois protocol in DASH is the cache-to-cache transfers
specified in this protocol. While they do little to reduce the latency
for misses serviced by local memory, local cache-to-cache trans-
fers can greatly reduce the penalty for remote memory misses. The
set of processor caches effectively act as a cluster cache for remote
memory.

The memory bus (MPBUS) of the 4D/340 is a synchronous bus
and consists of separate 32-bit address and 64-bit data buses. The
MPBUS is pipelined and supports memory-to-cache and cache-to-
cache transfers of 16 bytes every 4 bus clocks with a latency of 6
bus clocks. This results in a maximum bandwidth of
64 Mbytes/sec.

RC Board

DC Board

Figure 3. Directory and Reply Controller boards.

To use the 4D/340 in DASH, we have had to make minor modifi-
cations to the existing system boards and design a pair of new
boards to support the directory memory and inter-cluster interface.
The main modification to the existing boards is 1o add a bus retry
signal that is used when a request requires service from a remote
cluster. The central bus arbiter has also been modified to accept a
mask from the directory which holds off a processor’s retry until
the remote request has been serviced. This effectively creates a
split transaction bus protocol for requests requiring remote service.
The new directory controller boards contain the directory memory,
the intercluster coherence state machines and buffers, and a local
section of the global interconnection network.

While the prototype, with minor modifications, could scale to sup-
port hundreds of processors, the current version is limited to a
maximum configuration of 16 clusters and 64 processors. This
limit was dictated primarily by the physical memory addressability
of the 4D/340 system (256 Mbytes) which would severely limit the
memory per processor in a larger system.

The directory logic in DASH is responsible for implementing the
directory-based coherence protocol and interconnecting the clus-
ters within the system. Pictures of the directory boards are shown
in Figure 3. The directory logic is split between the two boards
along the lines of the logic used for outbound and inbound portions
of inter-cluster transactions.

The DC board contains three major subsections. The first section is
the directory controller (DC) itself, which includes the directory
memory associated with the cachable main memory contained
within the cluster. The DC logic initiates all out-bound network
requests and replies. The second section is the performance moni-
tor which can count and trace a variety of intra- and inter-cluster

94

events. The third major section is the request and reply outbound
network logic together with the X-dimension of the network itself.

The second board is the RC board which also contains three major
sections. The first section is the reply controller (RC) which tracks
outstanding requests made by the local processors and receives
and buffers replies from remote clusters using the remofe access
cache (RAC). The second section is the pseudo-CPU (PCPU),
which is responsible for buffering incoming requests and issuing
these requests onto the cluster bus. The PCPU mimics a CPU on
this bus on behalf of remote processors except that responses from
the bus are sent out by the directory controller. The final section is
the inbound network logic and the Y-dimension of the mesh rout-
ing networks.

Directory memory is accessed on each bus transaction. The direc-
tory information is combined with the type of bus operation, the
address, and the result of snooping on the caches to determine
what network messages and bus controls the DC will generate. The
directory memory organization is similar to the original directory
scheme proposed by Censier and Feautrier [4]. Directory pointers
are stored as a bit vector with 1 bit for each of the 16 clusters.
While a full bit vector has limited scalability, it was chosen
because it requires roughly the same amount of memory as a lim-
ited-pointer directory [2, 6, 11, 1] given the size of the prototype,
and it allows for more direct measurements of the caching behav-
ior of the machine. Each directory entry contains a single state bit
that indicates whether the clusters have a shared or dirty copy of
the data. The directory is implemented using DRAM technology,
but performs all necessary actions within a single bus transaction.

The reply controller stores the state of on-going requests in the
remote access cache (RAC). The RAC’s primary role is the coordi-

nation of replies to inter-cluster transactions. This ranges from the
simple buffering of reply data between the network and bus to the
accumulation of invalidation acknowledgments and the enforce-
ment of release consistency. The RAC is organized as a 128Kbyte
direct-mapped snoopy cache with 16byte cache lines. One port of
the RAC services the in-bound reply network while the other
snoops on bus transactions. The RAC is lockup-free in that it can
handle several outstanding remote requests from each of the local
processors. RAC entries are allocated when a remote request is ini-
tiated by a local processor and persist until all inter-cluster transac-
tions relative to that request have completed. The snoopy nature of
the RAC naturally lends itself to merging requests made to the
same cache block by different processors within the cluster, and it
takes advantage of the cache-to-cache transfer protocol supported
between the local processors. The snoopy structure also allows the
RAC to supplement the function of the processor caches. This
includes support for a dirty-sharing state for a cluster (normally the
Tllinois protocol would force a write-back) and operations such as
prefetch.

As stated in the architecture section, the DASH coherence protocol
does not rely on a particular interconnection network topology.
The prototype system uses a pair of wormhole routed meshes to
implement the interconnection network. One mesh handles request
messages while the other is dedicated to replies. The networks are
based on variants of the mesh routing chips developed at Caltech
where the datapaths have been extended from 8 to 16 bits[5].
Wormbhole routing allows a cluster to forward a message after
receiving only the first flit (flow unit) of the packet, greatly reduc-
ing the latency through each node (= 50ns per hop in our network).
The bandwidth of each self-timed link is limited by the round trip
delay of the request-acknowledge signals. In the prototype flits are
transferred at approximately 30 MHz, resulting in a‘peak band-
width of 120 Mbytes/sec in and out of each cluster.

4.0 Gate Count Summary

One important result of building the DASH prototype is that it pro-
vides a realistic model of the cost of directory-based cache coher-
ence. While some of these costs are tied to the specific prototype
implementation (e.g., the full DRAM directory vector), they pro-
vide a complete picture of one system.

At a high level, the cost of the directory logic can be estimated by
the fact that a DASH cluster includes six logic cards, four of which
represent the base processing node and two of which are used for
directory and inter-cluster coherence. This is a very conservative
estimate, however, because Silicon Graphics® logic, in particular
the MIPS processor chips and Silicon Graphics’ gate arrays, are
more highly integrated than the MSI PALs and LSI FPGAs used in
the directory logic.

Tablel summarizes the logic for a DASH cluster at a more
detailed level. The table gives the percent of logic for each section
and the totals in terms of thousands of 2-input gates, kilobytes of
static RAM, megabytes of dynamic RAM, and 16-pin IC equiva-
lents. RAM bytes include all error detecting or correcting codes
and cache tags. 16-pin IC equivalent is a measure of board area
(0.36 sq. inch), assuming through-hole technology (i.e. DIPs and
PGAs) was used throughout the design. (Actually about 1/4 of the
CPU logic is implemented in surface mount technology, but the IC
Equivalent figures used here assume through-hole since all of the
logic could have been designed in surface mount.) The number of
2-input gates is an estimate based on the number of gate-array 2-
input gates needed to implement each function, For each type of

95

logic used in the prototype the equivalent gate complexity was cal-
culated as:

Custom VLSI Estimate based on part documentation.

CMOS Gate Array Actual gate count or estimate based on
master-slice size and complexity.

PAL Translation of 2-level minimized logic
into equivalent gates.

PROM Espresso minimized PROM files trans-
lated into 2-input gates. This includes the
primary state machines in the DC and RC,
but not the boot EPROMs for the CPUs.

TTL Gates in equivalent gate array macros.

Table 1, Percent of all logic in a DASH cluster.

Gates | SRAM | DRAM | IC
Section ©00) | (KB) | (MB) | Equiv
Processors/Caches | 69.3% | 86.0% | 0.0% | 324%
Main Memory 33% | 00% | 758% | 12.7%
10 Board 83% | 0.0% | 14% | 13.5%
Directory Controller] 4.4% | 0.0% | 12.0% | 8.2%
Reply Controller 84% | 13% | 00% | 12.0%
PCPU 05% | 00% | 0.0% | 1.2%
Network Outbound | 2.8% | 0.7% | 0.0% | 43%
Network Inbound 11% | 07% | 00% | 24%
Performance Mon. 1.8% 5.3% 10.8% 3.5%
Total 535 | 2420 83 | 2603

The numbers in Table 1 are somewhat distorted by the extra logic
in the base Silicon Graphics’ hardware and the directory boards
that is not needed for normal operations. This includes (i) the per-
formance monitor logic on the directory board; (if) the diagnostic
UARTs and timers attached to each processor; (iii) the Ethernet
and VME bus interfaces on the Silicon Graphics’ /O board}
Table 2 shows the percentage of this core logic assuming the items
mentioned above are removed.

As expected, only when measured in terms of IC equivalents (i.e.
board area), is the cost of the directory logic approximately33%.
‘When measured in terms of logic gates the portion of the cluster
dedicated to the directory is 20%, and the SRAM and DRAM
overhead is 13.9% and 13.7% respectively.

Note that in the above analysis, we do not account for the hard-
ware cost of snooping on the local bus separately because these
costs are very small. In particular, the processor’s two-level cache
structure doesn’t require duplicate snooping tags, and the proces-
sor’s bus interface accounts for only 3.2% of the gates in a cluster.
Even if the second-level cache tags were duplicated, it would rep-
resent only 4.0% of a cluster’s SRAM. In practice, we expect most
future systems will use microprocessors with integrated first-level
caches (e.g.. MIPS R4000, DEC Alpha, etc.) and to incorporate an
external second-level cache (without duplicate tags) to improve
uniprocessor performpance. Thus, the extra SRAM cost for snoop-
ing (e.g., extra state bits) is expected to be negligible.

1. Each 1/O board would still include s SCSI interface for disk interfaci

Table 2. Percent of core logic in a DASH cluster.

Section Gates | SRAM | DRAM IC
000’s) | (KB) | (MB) | Equiv

Processors/Caches | 70.8% | 90.8% 0.0% | 452% |
Main Memory 39% | 0.0% | 863% | 13.9%
10 Board 51% | 0.0% | 0.0% | 103%
Directory Controller] 52% | 0.0% | 137% | 9.0%
Reply Controller 99% | 1.7% 0.0% | 13.1%
PCPU 0.6% | 0.0% 0.0% 1.3%
Network Outbound | 3.3% | 08% | 00% | 4.7%
Network Inbound 13% | 08% | 00% | 26%
Performance Mon. 0.0% 0.0% 0.0% | 0.0%
Total 456 1268 73 2286

Looking at the numbers in Table 2 in more detail also shows addi-
tional arcas where the directory overhead might be improved. In
particular, the prototype’s simple bit vector directory grows in pro-
portion to the number of clusters in the system, and in inverse pro-
portion to cache line size. Thus, increasing cache line size from 16
to 32 or 64 bytes would reduce the directory DRAM overhead to
6.9% and 3.4% respectively, or it could allow the system to grow
to 128 or 256 processors with the same 13.7% overhead. For larger
systems, a more scalable directory structure [2, 6, 11, 1] could be
used to keep the directory overhead at or below the level in the
prototype. The directory’s overhead in SRAM could also be
improved. The 128KB remote access cache (RAC) is the primary
use of SRAM in the directory. The size of the RAC could be sig-
nificantly reduced if the processor caches were lockup-free, With
enhanced processor caches, the primary use of the RAC would be
to collect invalidation acknowledgments and to receive granted
locks. This would allow a reduction in size by at least a factor of
four, and result in an SRAM overhead of less than 2%. Likewise, a
closer coupling of the base cluster logic and bus protocol to the
inter-cluster protocol might reduce the directory logic overhead by
as much as 25%. Thus, the prototype represents a conservative
estimate of directory overhead. A more ideal DASH system would
have alogic overhead of 18-25%, an SRAM overhead of 2-8% and
a DRAM overhead 3-14%. This is still significant,? but when
amortized over the cluster the overhead is reasonable.

The prototype logic distributions can also be extrapolated to con-
sider other system organizations. For example, if the DASH clus-
ter-based node was replaced by a uniprocessor node, the overhead
for directory-based cache-coherence would be very high. Ignoring
the potential growth in directory storage (that would need to track
individual processor caches instead of clusters), the percent of
directory logic in a uniprocessor node would grow to =44% (a
78% overhead). Thus, a system based on uniprocessor nodes
would lose almost a factor of two in cost/performance relative to a
uniprocessor or small-scale multiprocessor.

Another possible system organization is one based on a general
memory or messaging interconnect, but without support for global
hardware cache coherence (e.g., the BBN TC2000 or Intel Touch-
stone). An optimistic assumption for such a system is that it would
remove all of the directory DRAM and support, the RAC and its
datapath, and 50% of the RC and DC control pipelines. Under
these assumptions, the fraction of logic dedicated to the inter-clus-
ter interface falls to 10% of a cluster, and the memory overhead

2. Approximately equal to the complexity of a entire processor with its caches.

96

becomes negligible. Thus, the cost of adding inter-cluster coher-
ence to a large-scale, non-cache coherent system is approximately
10%. If more than a 10% performance gain is realized by this addi-
tion, then the overall cost/performance of the system will improve,
Our measurements on DASH indicate that caching improves per-
formance by far more than 10%, and support for global cache
coherence is well worth the extra cost.

Finally, by examining the required gate, memory, and connectivity
requirements, one can estimate how the prototype logic might be
integrated into a small number of VLSI components. As examined
in detail in [9], such a system could consist of clusters based on the
following:

+ Four single-chip microprocessors with direct control of
their second-level caches and a their interface to the clus-
ter’s snoopy bus.

» Asingle memory control chip interfaced to local DRAM
and the cluster bus.

« Anl/O interface chip connecting the cluster to a high-speed
fiber optic I/O links (e.g., fibre channel).

« Asingle directory controller chip interfacing to an external
mixed SRAM-DRAM sparse directory, the cluster bus, and
anetwork chip.3

« Asingle mesh routing chip supporting two logical 3-D
meshes.

This integrated system could maintain a similar directory logic and
memory overhead as the prototype, while supporting cache coher-
ence for 2K processors and 128 GBytes of memory.

5.0 Performance Monitor

One of the prime motivations for building the DASH prototype
was to study real applications with large data sets running on a
large ensemble of processors. To enable more insight into the
behavior of these applications when running on the prototype, we
have dedicated over 20% of the DC board to a hardware perfor-
mance monitor. Integration of the performance monitor with the
base directory logic allows non-invasive measurements of the
complete system without any external hardware. The performance
hardware is controlled by software, and it provides low-level
information on software reference characteristics and hardware
resource utilizations. The monitor hardware can trace and count a
variety of bus, directory and network events. The monitor is con-
trolled by a software programmable Xilinx gate array (FPGA){15]
allowing flexible event selection and sophisticated event prepro-
cessing.

A block diagram of performance logic is shown in Figure 4. It con-
sists of three major blocks. First, the FPGA which selects and pre-
processes events to be measured and controls the rest of the
performance logic. Second, two banks of 16Kx32 SRAMs and
increment logic that count event occurrences. Third, a 2M x 36
trace DRAM which captures 36 or 72 bits of information on each
bus transaction.

The counting SRAMs together with the FPGA support a wide vari-
ety of event counting. The two banks of SRAM are addressed by
events selected by the FPGA. They can be used together to trace
events that occur on cycle by cycle basis, or the banks can be used
independently to monitor twice as many events. By summing over
all addresses with a particular address bit high or low the number
of occurrences of that event can be determined. Likewise, the con-

3, A small associative RAC would be kept on-chip.

RMPA IMPD Bus, Directory
SN0> <A1.32> Bvents (a80)

~
Count Count n":‘gu’:" I—J—A
Bank 0 Bank 1
} Trace Buffer
16x 32 16kx32 RA 2Mx 36 DRAM
SRAM
{ A4 P
<63.32> <31,.0» <2..32> ‘j(:l’"::'
IMPD<63..0>

Figure 4. Block diagram of the performance monitor logic

junction or disjunction of any set of events can be determined by
summing over the appropriate address ranges. Another use of the
count SRAM is as a histogram array. In this mode, certain events
are used to start, stop and increment a counter inside the FPGA.
The stop event also triggers the counter to be used as a SRAM
address to increment.

The current use of the counting SRAM in the prototype increments
the two banks of SRAM independently on each bus transaction.
The data in the first bank allows access type frequencies, bus utili-
zation, access locality, RAC performance, remote caching statis-
tics and network message frequency to be calculated. The second
bank of SRAM is addressed with the local cache snoop results and
histogram counters of remote latency. The snoop data allows one
to determine the effectiveness of cache-to-cache sharing within the
cluster, The remote latency histogram dedicates an internal FPGA
counter to each CPU which is enabled whenever a processor is
waiting for a remote access. This allows a complete distribution of
remote access latencies to be determined. Furthermore, when com-
bined with the count of local bus cycles an estimate of processor
utilization can be made.

The other resource of the performance monitor is 2 2M x36 trace
array. Again, what information is traced can vary based on pro-
gramming of the FPGA, but the current use of the trace logic has
two modes. In the first configuration, up to 2M memory addresses
together with the issuing processor number and read/write status
are captured. The second mode can capture only 1M addresses, but
adds additional bus and directory state, and a bus idle count to
each trace entry. This trace information can be used to do detailed
analysis of reference behavior or as input to a memory simulator.
With software assistance the tracer can be used to capture much
longer traces and trace all memory references.

6.0 Prototype Performance

This section examines the performance of the initial hardware pro-
totype of DASH which includes 16 processors in four clusters. The
first part summarizes the memory latencies measured on the proto-
type hardware. The second part describes the speedups obtained by
parallel applications run on the actual machine.

97

6.1 Processor Issue Bandwidth and Latency

Although the coherent caches in DASH significantly reduce the
number of remote accesses made by a processor, it is still essential
to minimize the I when misses do occur. Table3 lists the
processor bandwidth and latency for cache memory operations in
DASH assuming no contention. (PClocks refer to processor clocks
which are 30ns in the prototype.) The delays are based on mea-
surements of the hardware, but extrapolated to a full 4x4 cluster
configuration. In the table, the best-case numbers assume stride-
one access, with one cache miss every four references (cache lines
are 16 bytes). The worst-case numbers assume stride-four accesses
with no reuse of cache lines.

The table presents data separately for reads and writes. For reads,
the access latency is given by the last column of the table. The
latency can vary by more than two orders of magnitude depending
on where a read access is serviced in the memory hierarchy. The
read bandwidth also varies considerably, from a high of 133 Mbyt-
es/sec from the primary cache to a meager 4 Mbytes/sec if all of
the data is dirty in a remote non-home cluster. While, beyond a
point, not much can be done about reducing the latency in large-
scale machines, the bandwidth can be increased via pipelining, and
it is for this reason we have provided non-blocking prefeich opera-
tions in DASH. The times given for store operations are the rate at
which writes are retired from the write buffer into the second-level
cache after acquiring ownership. Release consistency is assumed
so that the processor need not wait for the write to retire, and inval-
idations do not affect write latency.

Table 3. Cache operation bandwidth and latencies,

Cache Best Case Worst Case
Operation MB/ | Clock/| MB/ [Clock/
sec word sec word
Read from lst-lﬁ cache | 133.3 1.0 1333 1.0
Fill from 2nd-lev. cache 29.6 4.5 89 150
Fill from local bus 16.7 8.0 4.6 29.0
Fill from remote 5.1 26.0 1.3 101.0
Fill from dirty-remote 4.0 338 1.0 | 1320
Write retired 1n cache 320 33 | 320 4,
Write retired on local bus 183 73 8.0 16.7
Write retired on remote 53 253 15 88.7
Write retired on dirty-rem. 4.0 330 1.1 119.7

A more detailed break-down of the latency for local and remote
cache misses is given in Figure 5, The latency for a local miss that
is serviced within the cluster is based entirely on the base SGI
hardware (i.e., the hardware we have added to the SGI clusters
does not slow the system down). In the prototype, a simple remote
miss (i.e., a miss that is serviced by a remote home cluster) takes
=3.5 times longer than a local miss. The final case illustrated in
Figure 5 represents the latency for fetching a location that is dirty
in a cluster other than its home. In this case, an extra 30 clocks (or
1usec) of delay is incurred in forwarding the request to the dirty
cluster. The DASH protocol supports the direct transfer of the dirty
data between the dirty and requesting cluster, reducing latency by
20% over a simpler protocol that first causes a writeback to the
home cluster and then replies to the requesting processor.

‘While latencies in the DASH prototype (when measured in micro-
seconds) are far from optimal, we believe that the delays when
measured in processor clocks are quite indicative of what we
expect to see in future large-scale machines. The reason is that

Nanoseconds
0 600 1200 1800 2400 3000 3600 4200
34— £} Il |
]
g;o nsecs
-b pelocks
Local g g
il o
3030 nsecs
101 pelocks
2 7z
Cluster é
Ful %3 &
3960 nsecs
132 pelocks
/
3 Z Z
Cluster "// ,’4 3
Fil 73 788
| S S A
0 60 80 100 120 140
Processor Clocks
2-Cluster
Total . @ ol
Contributions .
to Latency ?7// '%z\gg\\\
%
I CPUOverhead B Locat Snoop
[Network

[0 Memory/ Directory
B BusOverhead

Network Interface

For clarity four processor clocks of bus overhead per bus transaction are not
shown in the bar graphs, but are included in the total contribution breakdown.

Figure 5. Cache fill latency in the DASH prototype.

while state-of-the-art technology (with integration and optimiza-
tion) would allow us to reduce the prototype’s latencies by a factor
of about three [9], state-of-the-art processor clock rates are also
about three times the 33 MHz used in the prototype. As a result, we
expect that exploiting cache and memory locality will continue to
be important in future large-scale machines, as will mechanisms
that help hide or tolerate latency.

6.2 Parallel Application Performance

This subsection outlines the performance actually achieved on the
prototype for a number of parallel applications. We begin by
describing the software environment available on the prototype
and how the measurements were made. We then present the
speedup for nine parallel programs representing a variety of appli-
cation domains. Three of these applications are studied more in
greater detail using data captured by the performance monitor.

6.2.1 Application Runtime Environment

The operating system running on the prototype DASH is a modi-
fied version of IRIX; a variant of UNIX System V.3 developed by
Silicon Graphics. The applications for which we present results are
coded in C that has been augmented with the Argonne National
Labs (ANL) parallel macros[10] to control 2 MIMD, shared-mem-
ory programming model.

Before giving the speedup results in the next subsection, we first
state the assumptions used in measuring the speedups. The
speedup were measured as the time for the uniprocessor to execute
the paralle]l version of the application code (i.e. not all synchroni-
zation code is removed) divided by the time for the parallel appli-

98

cation to run on a given number of processors. The runs were
averaged over a number of executions to eliminate any scheduling
anomalies in UNIX. In some applications, the serial start-up time
is ignored from the measurement because the runs vsed shortened
executions of the application (less time steps, etc.) to reduce mea-
surement time. In production runs the start-up time would be neg-
ligible.

For our measurements, each application process is attached to a
processor for its lifetime, and we fully use one cluster before
assigning processors to new clusters. Physical memory pages used
by the application are allocated only from the clusters that are
actively being used, as long as the physical memory in those clus-
ters is enough. Thus, for an application running with 4 processes,
all memory is allocated from the local cluster, and all misses cost
about 30 clocks. However, with 8 processes, some misses may be
to a remote cluster and cost over 100 clock cycles. Most of the pro-
grams allocate shared data randomly or in a round-robin fashion
from the clusters being actively used, but some include explicit
system calls to control memory allocation.® Finally, all applica-
tions were run under processor consistency mode, i.e., writes were
not retired from the write-buffer until all invalidation acknowledg-
ments had been received, and no prefetching has been added.

6.2.2 Application Speedups

Figure 6 gives the speedup for nine parallel applications running
on the hardware prototype using from 1 to 16 processors. The
applications cover a variety of domains. There are some scientific
applications (Barnes-Hut and Water), several engineering applica-
tions (Radiosity, MP3D, PSIM4, Locusroute) and two kernels
{(Cholesky, Matrix Multiply and Mincut). Four of the programs
(Water, LocusRoute, MP3D and Cholesky) are taken from the
SPLASH parallel application suite[14]. We begin with a quick
overview of all nine applications and then present the detailed ref-
erence behavior and performance of three of the applications (Bar-
nes-Hut, Water, and LocusRoute).

Starting with the applications with the best speedup, the Radiosity
application is from the domain of computer graphics. It computes
the global illumination in a room given a set of surface patches and
light sources using a variation of hierarchical n-body techniques.
The particular problem instance solved starts with 364 surface
patches, and ends with over 10,000 patches. While the data struc-
tures used are a complex oct-tree and a binary-space partition tree,
we see that caches work quite well and we get a speedup of over
14 with 16 processors. The second application, Barnes-Hut, is an
N-body galactic simulation solved using the Barnes-Hut algorithm
(an O(NlogN) algorithm). Again we see that although the structure
of the program is complex, good speedups are obtained.

The next application is Mincut. It performs graph partitioning
using parallel simulated annealing. We ran Mincut to find the min-
imum bisection of a graph containing 500 nodes. Mincut achieves
good speedups because there is extensive cache reuse as proces-
sors traverse the graph and repeatedly consider moving nodes as
the graph partition and annealing temperature change.

The next application is a scaled matrix multiply. It uses 88x88
square matrices on a single processor (obtaining 8.8 DP MFLOPS
on a single processor) and 1408 x 1408 matrices on 16 processors
(obtaining 125 DP MFLOPS). The application below that is the
Water code (the parallelized version of the MDG code from the

4. Currently all operating sysiem code and data are allocated from cluster-0's mem-
ory. This cavses cluster 0 to become a hot spot for OS misscs, and causes some
degradation in speedups. We arc in the process of fixing this problem.

16
————— Ideal
14 H —O Radiosi
~k~— Barmnes-Hut
12 o Mineut
——8—— ScaleMatMult
—ir— Water
10 e pspma i
=) =0 Cholesky
g |
—%—— MP3D
6
4
2
0 } + }
0 4 8 12 16
Number of Processors

Figure 6. Speedup of applications on the DASH prototype.

Perfect Club benchmarks), a molecular dynamics code. We mea-
sured runs using 512 water molecules.

PSIM4 is an application from NASA-Ames, that is a particle-
based simulator of a wind tunnel. PSIM4 is an enhanced version of
the MP3D code (the application with the poorest speedup), both'in
terms of functionality (it models multiple types of gases and it
models chemistry) -and in terms of locality of memory accesses (it
uses spatial decomposition of simulated space to distribute work
among processors). The 16 processor run is done with over
100,000 particles and it achieves a scaled speedup of over 12 in
contrast to a speedup of about 4 achieved by the older MP3D code.
While the changes in functionality make a direct comparison of
absolute execution time for PSIM4 and MP3D impossible, the
speedup improvements of PSIM4 over MP3D are very encourag-
ing.

The next application is Cholesky. It performs factorization of
sparse positive-definite matrices using supernodal techniques (data
blocking techniques that enhance the performance of caches both
for uniprocessors and multiprocessors). Here it is used 1o solve a
256x256 grid problem. We note that much of the fall off in
speedup that we see is due to the trade-off between large data
block sizes (which increase processor efficiency, but decrease
available concurrency and cause load balancing problems) and
small data block sizes. As we go to a large number of processors,
we are forced to use smaller block sizes unless the problem size is
scaled to unreasonably large sizes. The next application is Locus-
Route which performs global routing of standard cells. It will be
discussed later in this section.

Finally, as stated before, MP3D is a particle-based wind-tunnel
simulator. The measured runs simulated 40,000 particles. The
speedups for MP3D are poor because the particles are statically
allocated to processors, but the space cells (representing physical
space in the wind tunnel) are referenced in a relatively random
manner depending on the location of the particle being moved.
Since each move operation also updates the corresponding space
cell, as the number of processors increases, it becomes more and

99

more likely that the space cell being referenced will be dirty in
another processor’s cache. Thus, even with four processors, the
speedup is poor. When a second cluster is added, speedup is flat
because roughly half of the misses are now remote. MP3D’s
speedups improve for 12 and 16 processors, but this does not com-
pensate for the initial inefficiencies encountered with 4 and 8 pro-
€ess0r18.

Overall, we see that many applications achieve good speedups,
even though they have not been specially optimized on the DASH
prototype. Almost all get over ten times improvement on sixteen
processors, and some get above fourteen times speedup.

6.2.3 Detaijled Case Studies

To get a better understanding of the detailed reference behavior of
these applications, we now examine Barnes-Hut, Water, and
LocusRoute in more detail. We also extend the results for these
applications with preliminary results from the 32-processor DASH
system (which has just been up for the last two weeks). As
expected from Figure6, Bamnes-Hut and Water achieve good
speedups on 32 processors (27.5 and 24.5 respectively), but the
specdups for LocusRoute fall-off significantly (9.9 at 16, but only
13.2 at 32). These applications were chosen because they achieved
a range of speedups, and we were able to get results for them on
the larger 32-processor system. We expect that once the 32-proces-
sor kernel is better tuned the speedups will improve.

6.2.3.1 Barnes-Hut

The Barnes-Hut program[13] models the dynamic evolution of a
system of galaxies under gravitational forces. Using the Bames-
Hut algorithm, the possible N? interactions are reduced to MogN
by a hierarchical decomposition of the galaxies and by approxi-
mating groups of distant bodies by a single point at their center of
mass. The input to the measured runs consisted of two interacting
Plummer-mode] galaxies with 16384 bodies each.

Table4 gives a detailed memory reference profile of Barnes-Hut
runnmg on DASH as measured by the hardware performance mon-
itor.” Table 5 is broken into four sections: (i) overall performance
and processor utilization; (ii) memory request distribution; (iii)
request locality and latency and (iv) bus and network utilization.

The first section of the table gives the overall speedup, efficiency
relative to the uniprocessor, and processor utilization. Unfortu-
nately, processor utilization cannot be measured directly from the
bus, so the number in the table is an estimate that assumes the pro-
cessor is doing active work whenever it is not waiting for a bus
transaction to complete This ignores internal stalls due to first-
level cache misses satisfied by the second level, TLB miss han-
dling, and floating-point interlocks.5 The number of busy clocks
between stalls (third row) give an indication of cache hit rate and
the application’s sensitivity to memory latency.

As indicated by Table4, Barnes-Hut has a high and nearly constant
cache-hit ratio, and a large fraction of its misses are local. Thus,
processor efficiency and speedup are very good as the number of

5. The results given in the tablc are averaged over all active clusters. This implies
some inaccuracies for the one and two proceasor runs due 1o the overhead of the

idlep g the UNIX scheduler and d (c.g,, slightly lower pro-
cessor utilization for 1 and 2 p than ford p),
6. Since writes are buffered, they are not d 10 stall the p direcily.

Instead, it is assumed that the processor can execute for 20 clocks before stalling.
'I‘hxsdehylsanesnmawothcnmeforduepmemonoﬁllﬂxemhqumdzw
the write-buffer (i.c. ng 15% 1 are). In reality, the proces-
sotm:ynotmuewmeuuhunw.ormaym]luﬂmn!mloaﬁmlwelcwhe
miss.

processors increases. There is a small drop in efficiency as the first
remote cluster is added, but the degradation beyond this is slight.

The second section of Table 4 gives a breakdown of the memory
reference types. This breakdown indicates the type of accesses that
cause bus transactions and whether synchronization references are
significant. In Bames-Hut, cache read misses dominate and there
are few synchronizations.

The third section of Table S lists the fraction of local cache fills,
the fraction of remote fills satisfied by a dirty-remote cluster (ratio
of 3 cluster to 2 cluster fills), and the latency for local and remote
cache fills. The locality figure counts any references satisfied in a
single bus transaction as local, while any that must be repeated are
considered remote. Thus, a remote reference that was satisfied by a
local cache-to-cache transfer between processors would be consid-
ered local, and a local reference that was dirty-remote would be
considered remote.”

For Barnes-Hut, cluster locality is high and decreases only slightly
as clusters are added. The actual locality of references (not given
in the table) does decrease as clusters are added, but most commu-
nication is with nearby processors. Thus, even though the home for
the data is remote, many remote accesses are satisfied by a local
cache-to-cache transfer from another processor in the cluster. In
addition, of the references that are remote, most misses are ser-
viced by the home cluster. This results from the fact that most of
these misses are to global data, and only the first processor needs
to fetch this data from the producing (i.e. dirty) cluster. The others
read the shared data from the home.

The final section of Table4 indicates the load on the cluster bus
and on the bisection of the mesh networks. Bus utilization is mea-
sured directly by the performance monitor, while the network
bisection utilizations are estimates assuming uniform network traf-
fic. The bisection utilizations are calculated by knowing the total
number of network messages sent, assuming half of the messages
cross the bisection of the mesh, and dividing by the bandwidth
provided across the bisection.® For Barnes-Hut, both the buses and
networks are lightly loaded.

In Bames-Hut, as in the other applications studied, the bus loading
is higher than the network bisection loading. This is due to the rel-
atively slow cluster bus used in the prototype, and the retry mecha-
nism used for the remote references which implies that each
remote reference includes at least three bus accesses, but only one
network request and one network reply. For the size of the proto-
type, the individual cluster buses limit total memory bandwidth. In
larger systems with more nodes and faster split-transaction cluster
buses, we expect that the network bisection will limit aggregate
memory bandwidth if accesses are uniformly distributed.

6.2.3.2 Water

Water is a molecular dynamics code from the field of computa-
tional chemistry, The application computes the interaction between
a set of water molecules over a series of time steps. The algorithm
is O(NV?) in that each molecule interacts with all other molecules in

7. The 20-25% dirty-remote fills when using 1-4 processors are background OS
activity. This is only 20-25% of the 0.5-3.0% of the misses that are remote. Local
misses caused by the application dominate. When using 8 processors, the dirty-
remote percentages are low because there are never any three cluster fills because
there is only two active clusters.

8. The factor of two increase when going from 12 1o 16 processors arises because the
32-processor DASH is arranged in a 4x2 grid. Currently, processors are numbered
and allocated first in the X-dimension so that the 16 processors run in a 4x1
ensemble. Thus, a single X-dimension path sees the load of all four clusters.

100

the system. As shown in Figure 6, the Water application achieves
good speedup on the DASH hardware.

Table 5 shows that cache-locality ‘is high in Water, and the time
between processor stalls indicates that it is not highly sensitive to
memory latency. The table does show some reduction in the busy
clocks between stalls, especially when going from 2 to 4 proces-
sors, but the decrease is slight after this initial drop. In comparison
with Barnes-Hut, Water achieves a slightly lower speedup due to
lower cluster locality which increases the average miss penalty. As
indicated by the fraction of dirty-remote cache reads, many more
of the misses in Water are satisfied directly by the producing pro-
cessor than in Bames-Hut.

Looking at the breakdown of memory reference types in Water, the
percentage of synchronization references is fairly high. This is due
in part to the high cache hit rates, and to the fact that every suc-
cessful lock acquire or release references the bus in the prototype.
Given the percentage of locks and unlocks are almost identical,
this data also indicates that lock contention is not a problem in
Water.

Finally, we see that like Barnes-Hut, Water does not put a heavy
load on the memory system. While the table does indicate an
increase in remote memory latency, this is due to the increasing
fraction of remote misses that are dirty-remote as opposed to larger
queuing delays.

6.2.3.3 LocusRoute

LocusRoute is a standard-cell placement tool that uses actual
routed area to evaluate the quality of a given placement. Thus, the
task that LocusRoute performs is the routing of a given cell place-
ment. LocusRoute exploits parallelism at two levels. First, multi-
ple wires are routed simultaneously. Second, different routes for
the same wire are evaluated in parallel. The runs shown in Figure 6
were for the route of a circuit consisting of 3817 wires and 20 rout-
ing channels.

LocusRoute achieves a respectable 9.9 times speedup on 16 pro-
cessors, but speedup does not increase linearly when more than 16
processors are used (only 13.2 times speedup on 32 processors).
Comparing the reference behavior of LocusRoute shown in
Table 6 with that of Water, it is clear why LocusRoute does not
achieve the same speedup. First, its cache hit rate (busy pclocks
between stalls) is lower than Water. This makes it more sensitive to
the increase in memory latency when going to multiple clusters.
Second, as in Water, locality falls off with more processors and the
fraction of dirty-remote references also increases.

Considering the application data structures and algorithms, these
effects are not surprising. In LocusRoute, most misses are due to
the cost array which tracks the number of signals routed in a given
section of a channel. The cost array is actively updated by each
processor, and there is only limited reuse of the data structure as
wires are routed. The result is a lower hit rate than Water and more
sensitivity to Jocality.

Looking at system loading, it is clear that LocusRoute puts more
stress on the memory system than Barnes-Hut or Water, Bus utili-
zation is moderate (35-40%). The large latencies for remote mem-
ory references when using 24 or 32 processors are due in part to
hot spotting for the cost array. In the current implementation, this
array is allocated only out of cluster 0’s memory. For the 32-pro-
cessor run, this cluster has over 65% bus utilization (as compared
1o the average of 37%), and we suspect there is substantial queuing
at the PCPU. While removing this hot spot should improve perfor-
mance, we expect that LocusRoute will achieve significantly better
speedup on more than 16 processors only with larger problems.

Table 4. Barnes-Hut memory access characteristics

Execution Atiribute 1 Proc. | 2Proc. | 4 Proc. | 8 Proc. | 12 Proc. | 16 Proc. | 24 Proc. | 32 Proc.
xpeedup 1.0 2.0 3.9 14 10.7 142 20.6 2719
"Efficiency (relative to uniprocessor) 1.00 0.99 0.96 0.92 0.89 0.89 0.86 0.86
Busy Pclks between Proc. Stalls 526.3 633.8 602.7 606.8 534.6 602.7 564.5 560.9
[Est. Processor Utilization (%) 946 95.6 95.5 942 529 934 925 923
[Cache Read (%) 83.6 30.3 883 913 20| 90.1 90.5 %04 |
Cache Read Exclusive (%) 9.7 6.8 10.1 6.5 6.1 6.9 6.7 6.7
Cache Lock (%) 2.3 1.4 0.7 1.1 1.2 1.6 20 2.0
Cache Unlock (%) 2.1 13 0.7 0.8 0.7 0.8 0.6 0.6
[Fraction of Reads Local (%) 978 39.0 9. 9.8 86.8] 849 2.6 825
Fraction of Rem. Rds. Dirty-Rem (%) 21.8 21.0 21.2 9.1 6.4 57 55 53
Avg Local Cache Fill (Pclks) 292 202 293 294 294 29.4 294 294
Avg Rem Cache Fill (Pclks) 106.6 1074 105.7 104.2 106.2 109.1 110.9 113.1
[Bus Utilization (%) 5.2 6.3 9.1 9.8 11.0 10.2 109 11.0
Reg. Net Bisection Util. (%) 0.6 0.7 0.7 0.8 0.9 1.7 1.9 20
Reply Net Bisection Util. (%) 0.5 0.5 0.5 0.9 1.1 2.2 25 2.6

Table 5. Water memory access characteristics
Execution Attribute 1 Proc. | 2Proc. | 4 Proc. | 8Proc. | 12 Proc. | 16 Proc. | 24 Proc. | 32 Proc.
Speedup 1.0 2.0 3.8 1.1 104 13.3 193 4.6
Efficiency (relative to uniprocessor) 1.00 0.99 0.95 0.89 0.87 0.83 0.80 0.77
Busy Pclks between Proc. Stalls 935.9 955.0 614.6 5283 515.0 5237 553.8 506.3
Est. Processor Utilization (%) 975 97.7 97.2 93.2 91.1 90.6 89.2 880
'Cache Read (%) 46.0 252 46.7 469 45.2 452 44.6 270
Cache Read Exclusive (%) 11.9 13 25.1 29.6 309 30.9 31.7 308
Cache Lock (%) 20.9 23.8 14.1 12.1 124 12.5 123 11.8
Cache Unlock (%) 20.8 23.7 14.1 114 11.6 114 11.5 105
Fraction of Reads Local (%) 96.0 §7.2 994 689 55.1 51.6 409 428
Fraction of Rem. Rds. Dirty-Rem (%) 214 21.6 22,6 9.2 18.3 210 48.0 560
Avg Local Cache Fill (Pclks) 29.2 292 294 29.6 29.7 29.7 29.7 29.8
Avg Rem Cache Fill (Pclks) 102.8 107.5 106.9 104.5 108.1 111.6 1183 120.6
"Bus Utilization (%) 7.6 L%} 10.2 43 163 16.6 177 188
Req. Net Bisection Util. (%) 0.7 0.8 0.7 1.5 2.0 4.6 6.1 6.7
Reply Net Bisection Util. (%) 0.5 0.6 0.5 1.8 2.5 53 6.3 6.7
Table 6. LocusRoute memory access characteristics
Execution Attribute 1 Proc. | 2 Proc. | 4 Proc. | 8 Proc. | 12 Proc. | 16 Proc. | 24 Proc. | 32 Proc.
 Speedup 10 2.0 33 €3] 84 93 119 .
Efficiency (relative to uniprocessor) 1.00 0.99 0.95 0.79 0.70 0.62 0.50 041
Busy Pclks between Proc. Stalls 342.8 3124 258.0 196.1 1794 1754 1799 181.2
Est. Processor Utilization (%) 927 929 92.0 79.1 73.1 69.5 64.8 594
Cache Read (%) 74.0 703 8.8 64.5 69.0 693 69.8| 70.1]
Cache Read Exclusive (%) 15.8 219 25.8 313 215 272 26.5 26.0
Cache Lock (%) 5.0 3.9 27 23 20 2.1 24 2.7
Cache Uniock (%) 5.0 38 26 2.0 1.5 14 1.3 1.0
Fraction of Reads Local (%) 571 584 996 537 60.7 344|465 a13
Fraction of Rem. Rds, Dirty-Rem (%) 249 24.7 228 29 20.8 28.0 336 350
Avg Local Cache Fill (Pclks) 29.1 29.3 29.7 304 30.8 310 310 309
Avg Rem Cache Fill (Pclks) 108.2 1069 107.3 109.1 119.6 128.7 149.6 183.0
[Bus Utilization (%) 79 89 7.1 30.8 36.1 38.2 383 368
Req. Net Bisection Util. (%) 0.6 0.6 0.7 38 59 142 16.1 16.1
Reply Net Bisection Util. (%) 0.5 0.5 0.5 49 6.7 154 16.8 16.6

101

6.2.4 Application Speedup Summary

Overall, a number of conclusions can be drawn from the speedup
and reference statistics presented in previous sections. First, it is
possible to get near linear speedup on DASH for a number of real
applications. Applications with the best speedup have good cache
and cluster locality. Since most of the degradation in memory
latency occurs when adding the first remote cluster, ‘we expect
most of the applications will perform well on 32 and 64 proces-
sors. Speedup for many of the applications should be more than 24
on 32 processors, and more than 45 on 64 processors, especially if
problem size is increased.

In absolute terms, the number of busy clocks between bus accesses
indicates that caching of shared data improves performance signif-
icantly. For example, earlier simulation work with the SPLASH
benchmarks[14] indicates that the reference rates for Water and
LocusRoute to shared data (with 32 processors) is roughly one ref-
erence every 20 and 11 instructions respectively. Given the num-
ber of busy clocks between misses for Water and LocusRoute
given in Table 5 and Table6 (or even assuming that the number of
processor instructions between stalls is optimistic by a factor of
two due to internal stalls), caches are satisfying 92% of the shared
references in Water (i.e. there are at least 506/2/20~ 12 shared
references for every miss), and 88% of the shared references in
LocusRoute. Thus, processor utilization without caching would be
only 26% in Water and only 13% in LocusRoute.” Overall, this
implies that caching of shared data improves performance by a
factor of 3.4-4.5 in these applications, but as shown earlier, only
adds 10% to system cost.}0

Even with caches, however, locality is still important. If locality is
very low and communication misses are frequent (as in MP3D),
then speedup will be poor. However, for many applications, the
natural locality of the applications is enough (e.g., Bames-Hut,
Radiosity, Water) that good speedups can be achieved without
algorithmic or programming contortions. Even in applications
where natural locality is limited, DASH’s shared-address space
model allows the programmer to focus on the few critical data
structures that are causing loss in performance, rather than having
to explicitly manage (replicate and place) all data objects in the
program.

7.0 Conclusions

This paper has outlined our experience in building and starting to
use the DASH prototype system. The first result from building the
prototype is that such systems are feasible. While the coherence
protocol and hardware are not trivial, such systems can be built.
Looking in more detail at the logic and memory costs exhibited by
the prototype, we have shown that the logic overhead for support-
ing distributed shared memoty (without coherence) is about 10%.
Supporting cache coherence adds another 10%-14% in logic and
memory overhead if clustering is used.

The second result of building the prototype has been an analysis of
the memory system performance. At the lowest level, it is clear
that remote memory latencies are significant. We believe this will
remain true as processor speeds increase relative to the inherent
delays of a large system. Thus, both cache and cluster locality are

9. This assumes the locality of shared references is the same as the locality given-in
the table. This is optimistic since there wonld be no cache-to-cache sharing.

10. The extra overhead costs for caching is conservative because we ignore any
added costs in the uncached system that would be necessary to increase the band-
width to main memory.

102

important in this class of machines, and latency hiding techniques
(e.g., prefetch) may be very useful.

The prototype system has also allowed us to measure applications
with large data sets using the performance monitor hardware. A
number of parallel applications have been run and most achieve
good speedup. Many of these applications achieve better than 12
times speedup on 16 processors, and the preliminary results with
the 32-processor machine indicate that many will also work well
with 32 and 64 processors.

Acknowledgments

This research has been supported by DARPA contract N0O0039-91-
C-0138. Dan Lenoski is supported by Tandem Computers Inc.
James Laudon is supported by IBM. Anoop Gupta is partly sup-
ported by a NSF Presidential Young Investigator Award.

References

[1] Agarwal, A, B.-H. Lim, D. Kranz, and J. Kubiatowicz.
LimitLESS Directories: A Scalable Cache Coherence
Scheme. In Proc. Fourth Int. Conf. on Architectural Support
Programming Languages and Operating Systems. pp. 224-
234, 1991.

{2] Agarwal, A., R, Simoni, J. Hennessy, and M. Horowitz. An

Evaluation of Directory Schemes for Cache Coherence. In

Proc. 15th Int, Symp. on Computer Architecture. pp. 280-

289, 1988.

[3] Baskett, F.,, T. Jermoluk, and D. Solomon. The 4D-MP

Graphics Superworkstation: Computing + Graphics = 40

MIPS + 40 MFLOPS and 100,000 Lighted Polygons per

Second. In Proc. Compcon Spring 88. pp. 468-471, 1988.

{4] Censier, L. and P. Feautrier, A New Solution to Coherence

Problems in Multicache Systems. IEEE Trans. on

Computers, C(27):1112-1118, 1978.

[5] Flaig, C.M., VLSI Mesh Routing Systems. Technical Report

5241:TR:87, California Institute of Technology, May 1987.

[6] Gupta, A., W.-D. Weber, and T, Mowry. Reducing Memory

and Traffic Requirements for Scalable Directory-Based

Cache Coherence Schemes. In Proc. 1990 Int. Conf. on

Parallel Processing. pp. 1:312-321, 1990.

[7] Lenoski, D., J. Laudon, K. Gharachorloo, A. Gupta, and 1.

Hennessy. The Directory-Based Cache Coherence Protocol

for the DASH Multiprocessor. In Proc. 17th Int. Symp. on

Computer Architecture. pp. 148-159, 1990,

[8] Lenoski, D., J. Laudon, K. Gharachorloo, W.-D. Weber, A.

Gupta, J. Hennessy, M. Horowitz, and M. Lam, The Stanford

DASH Multiprocessor. Computer, 25(3), 1992.

[9] Lenoski, D.E., The Design and Analysis of DASH : A Scalable

Directory-Based Multiprocessor. Ph.D. Thesis. Stanford

University. 1991. Also available as Stanford University

Technical Report CSL-TR-92-507

[10] Lusk, E., R. Overbeek, J. Boyle, R. Butler, T. Disz, B.

Glickfeld, J. Patterson, and R, Stevens, Portable Programs

for Parallel Processors. Holt, Rinehard and Winston,

Inc.1987.

1]

f12]

[13]

{14]

[15]

OKrafka, B.W. and A.R. Newton. An Empirical Evaluation
of Two Memory-Efficient Directory Methods. In Proc. 17th
Int. Symp. on Computer Architecture. pp. 138-147, 1990,

Papamarcos, M.S. and J.H. Patel. A Low Overhead
Coherence Solution for Multiprocessors with Private Cache
Memories. In Proc. 11th Int. Symp. on Computer
Architecture. pp. 348-354, 1984.

Singh, I.P., C. Holt, T. Totsuka, A. Gupta, and J.L.. Hennessy,
Load Balancing and Data Locality in Parallel N-body
Techniques. Technical Report CSL-TR-92-505, Stanford
University, 1991.

Singh, J.P., W.-D. Weber, and A. Gupta, SPLASH : Stanford
Parallel Applications for Shared Memory. Technical Report
CSL-TR-91-469, Stanford University, 1991.

Xilinx, The Programmable Gate Array Data Book. 1991.

103

Chapter 4

Simulation Design and

Implementation

4.1 Overview

This section discusses some of the design decisions made during the initial phase of the

project including;
e The simulation construction rationale.

e The level of detail to be simulated.

4.1.1 Simulation Construction Rationale

After assimilating material regarding the operation of the DASH multiprocessor the next
task was to decide upon the structure of the HASE simulation. It was decided to adopt a
top-down approach to simulation design as this provided a useful way of hiding technical
detail in the initial design stages. By starting with a single simulation entity called ‘The
DASH System’ it was simple to break down the architecture by a series of refinements.
For example, the level below this most abstract starting point was the ‘Cluster Level’ in
which we considered DASH clusters and their interconnection.

It is interesting to note that whilst the design phase took a top-down approach the
implementation of the simulation proceeded bottom-up with the lowest level entities being

‘tied’ together via HASE’s group facility (discussed later).

37

The DASH System
Level 0

DASH Clusters and

Interconnection Networks
Level 1

High Level Cluster Components
(Mernory, Bus, Processors, Directory Control)

Lower Level Cluster Components
{Memoty, Bus Pipeline Sections, 1stand 2nd Level
Progessor Caches , RC and DC Directory Control Boards)

Processor Instruction Set Level

Figure 4.1: Initial Simulation Decomposition Hierarchy.

4.1.2 Simulation Detail

Obviously the top-down refinement of any design must stop at a point suitable for the
task in hand (for example, in our simulation we try to offer a demonstration tool to
illustrate features of DASH such as the cache coherency mechanisms, thus a low-level
silicon simulation is irrelevant to our particular needs).

After the initial top-down design the resulting simulation hierarchy was that shown in
Figure 4.1.

It was decided that the highest level of abstraction served only to bind the lower
levels together to a single reference point and would provide no useful information within
a simulation. For this reason the top level was discarded early in the design process.

Following this assessment of the upper level of simulation abstraction, attention was
turned to the suitability of the suggested lower bound. During the initial design it seemed
logical to stop refinement at the instruction set level. However after experimentation with
HASE is was soon realised that this level of implementation would be very time consuming
(implementing the MIPS R3000 at the instruction set level could be a project in itself!).
Clearly some abstraction was required from the instruction set level whilst still aiming to
retain enough detail to allow accurate modelling of the architecture’s salient features (for
example the coherency mechanisms and interconnection networks).

Faced with this problem a list of requirements was drafted:

e It was desirable for users of the simulation to be able to observe the effect of various

memory requests throughout the system.

38

| ll

o There should be a differentiation between read and write requests to memory in

order to demonstrate fully the coherency protocols.

e Memory requests should be specified with explicit addresses so that local, home

and remote cluster addressing mechanisms could be realised.

o Users should be able to define their own input MIPS trace files so as to observe the
effect of different addressing orders on the simulation (for example to see how well
the system exploits the locality principle). This meant that any input file should be

simple to generate.

Given the above criteria, it was decided that rather than implement the actual MIPS
instruction set it would be possible to implement an abstract instruction format which
could drive the simulation with a level of accuracy adequate for our needs. The new
format need only allow specification of a read /write and main memory address pair.

By modelling the address generation of the MIPS processor in such an abstract way
however, the ability to distinguish between instruction requests and data requests! is lost.
Although this may seem to be a large inaccuracy, the simulation can still demonstrate the
DASH coherency protocols as well as the use of primary and secondary processor caches.
This is possible as these features are based around the classification of accesses as reads
or writes. However, this compromise in simulation detail makes the modelling of actual
processor behaviour impossible. In effect the MIPS processor entity only functions as a

simple address generating box.

4.2 Modelling the Entity Hierarchy in HASE

Having now decided upon the scope of simulation abstraction the next phase of simulation
design involved connecting entities together so as to define data paths in the model.

The HASE on-screen designer provides a useful environment for such experimentation.
Ports and links are drawn on-screen between the icons representing simulation entities

(as described in section 2.2.2). HASE also provides facilities to group entities together in

;

a hierarchical manner. This feature was used to describe the simulation model in terms
of the previously discussed abstraction hierarchy. At this point the HASE model contains

no actual functionality — this is added at a later stage. However it is possible to use the

! Apart from noting that all instruction requests will be reads

39

RC FIFO Y-dim s Y1

PCPU Y-dim

Node MPbus
l : MIPS . — * g Req.
i1 Address Prrary Data ;;fg:;‘; : : Bus FIFO Yedim | ¢ +1
Generation i — Atbitration router [d———>
' ’ Stage e :
e JR R P » ! ' Req. ‘__I_.'
' Node 7 H . FIFO Y-dim | ¢ Xt
: MPS = ooy Data [P] Secondary | ! : : : router ﬂ_‘l—'
;| Address Cache Data Cache | : : A P :
I i | .Generation t—]| : H . R LR R L EE R LR R LR it d
e e /\/ | oo | |
e semeemEsemsmammsemecmsTer R aas T R M TmnSter
l Node g Stage |
: MIPS > Prmary Data » Secondary
' Address . .
. 3 Cache Data Cache ' ¢ H
i | Generation] : : Cluster Memory
| L e e .. : A :
Noda Bus Data l
: . <
: mps Primary Data Secondary | - h Transtor :
Address Cache Data Cache | g Stage :
Generation [+ <

Figure 4.2: Three Levels of Architectural Abstraction.

HASE functions up.level and expand to navigate the abstraction hierarchy in order to
test the final appearance of the on-screen simulation.

A three-level entity hierarchy was finally constructed. This three-level model corres-
ponds to levels 1,2 and 3 shown in Figure 4.1; the actual HASE screen output related
%o this three-level construction can be found in Appendix A of this report. Level 4 has
been replaced by the abstract instruction format discussed above in section 4.1.2. This
instruction format is realised in Sim++ code.

Figure 4.2 shows the three level entity hierarchy found in a DASH cluster. The
dotted lines surrounding groups of entities indicate a collection of entities which have been
grouped together to form a single icon at a higher level of abstraction. For example, a
MIPS address generation box, primary cache and secondary cache constitute a processing
node. Similarly all the entities in Figure 4.2 are encompassed in the highest level of
abstraction — the cluster.

Another valuable feature of HASE worth mentioning at this point is the facility to
allow multiple levels of abstraction to be viewed simultaneously. This viewing mechanism
is facilitated via the use of HASE ‘free-ports’. These are entity connection ports which
transcend multiple levels of the object hierarchy. Consider Figure 4.3 which shows the

simulation entity tree exhibiting all three levels of design abstraction simultaneously. The

40

Level 1

: i Pt Direclory Cluster
Level H h
evel 2 : Node Q-D Node 0 Node 0 Node - Controfier Mermory MPbus

Figure 4.3: HASE Abstraction through Free Ports.

tree has been expanded to allow a detailed inspection of one particular DASH cluster
(abstraction level 3 of Figure 4.1) whilst the remaining clusters are visible at a high level
(level 1 of Figure 4.1) of abstraction.

In Figure 4.3 an entity selected for expansion is shown by a thick bordered box,
unexpanded entities are denoted via a dotted surround. The lowest level entities (those
which in our simulation will eventually contain the Sim++ functionality) are shown as oval
shapes. In this figure HASE free ports would be found connecting lower level components
together into a medium level grouping. At this medium level composite entities from the
lower levels and medium level entities (such as the cluster memory entity) are grouped
together and connected to the highest abstraction level, also by free ports.

Free ports can be used to transcend more than one level of hierarchy. For example,
the lowest level entities used for describing the mesh interconnection logic have free ports
which propagate upwards to the highest abstract level (the cluster) to allow clusters to

be joined together.

4.3 HASE Mechanisms for Describing Entity Behaviour

One of the major challenges in the implementation of the DASH simulation was the use
of the new GUI based HASE entity specification interface. When defining a simulation
in the HASE environment many attributes of the simulation need be speciﬁéd. These

include:

e Entity layout design: (such as the layout design discussed above in section 4.2)
This includes specifying the bitmap used represent the entity on-screen, defining

port icons and giving co-ordinates for dynamic state information placement (for

41

*

example a cache unit in our simulation possesses a dynamically updated text display

in the centre of the cache icon displaying read/write and hit/miss information).

e Port and link specification: All communication points for a given entity must
be specified in terms of the protocol they will carry and their position on screen.
Ports are also defined as being source or destination points, however this is at
present just a labelling convention and in actuality there is no checking performed

by HASE ensuring that each link comprises of a source and destination.

e Global Simulation Parameters: These parametersspecify simulation parameters
which are accessible by all simulation entities. They are useful in varying simulation

conditions. For more detail readers are referred to [PHV95].

e Each entity’s operational parameters: This is state information to be used

locally by a given entity.

e Port/link protocols: having defined and joined ports together with communica-
tion links the simulation designer must specify the format of the data to be passed

over the link.

Prior to the release of HASE 5.4/5 all this information was specified in a C4++ file
which was translated into an ObjectStore database at compilation time. This C+4+ file
was known as an ADF (Architecture Description File) and required the programmer to
have a detailed understanding of HASE’s internal object hierarchy before he/she could
proceed with simulation design/implementation work.

In a move to make the design aspect of HASE more user-friendly the HASE devel-
opment team implemented a set of X11 menus and dialogs? to allow all the information
previously specified in the ADF to be entered in a more intuitive way. This yielded
the benefit that designers could start work under HASE without the previously required
knowledge of HASE’s internal operation.

4.4 Event Handling Strategy

When programming an entity’s Sim++ body code various event handling strategies may

be adopted. After a period of initial experimentation with HASE and Sim++, several

2Two of these dialogs are shown in sections 2.2.1 and 2.2.2.

42

event handling strategies were found to work well in differing situations. However the

final DASH simulation uses the two following generalised techniques only:

Fully Event-Driven Approach : In this scheme an entity’s state information is set up
at simulation time zero. Immediately after this initialisation the entity’s code enters
an infinite loop. This loop proceeds to wait for the next event sent to the entity
(via any port) and then calls an appropriate event handler (which may in turn call
further class methods to process the event). This technique ensures that there is
only ever one call per iteration to the HASE macro GET NEXT() and that each event
must be fully processed, and a suitable simulation delay incurred, before the next

iteration can take place.

This proved important in making debugging tolerable. Previous DASH prototype
simulations often employed several calls to GET_NEXT per iteration. This proved
‘messy’ and meant that events could be received in the wrong section of simulation

code if extreme care was not taken.

Zero Time Event Handling : The only exception to the above ‘one GET.NEXT call
per iteration’ approach was made when dealing with ‘zero-time’ message exchanges.
Often when programming the behaviour of a simulation entity one requires to gather
some state information from another entity before a decision can be made as to the
outcome of an event. Sim++ allows messages to be passed between entities with a
delay of zero time which provides a useful basis for the gathering of the previously
mentioned state information. For example, when implementing the MPbus state
information is often required from all the attached processors (say, if they are waiting
for bus control). By performing a poll of all processors (via some agreed protocol)
in zero time the required information can be gathered. A side-issue worth noting
is that the zero-time messages are sent using the Sim++ function sim_schedule to
prevent the animator displaying the packets on the links used (if the animator were

to do this some very strange displays would result!).

A polling example similar to that cited above is illustrated in Figure 4.4. Notice
the way that through the use of sim_schedule the poll and response is done in zero

simulation time units.

43

time= n+1

GET_NEXT()

handie(a)

poll{ent A) via
sim_schedule

GET_NEXT()

o

Start main
event-loop.

Requires
polling of entity
A for state info

Send

l polt

Ready to receive
poll response

event (resp) >

After getting
state info from
entity A now
process original
event

time=n simulate

processing
delay {move on
simulation time
for entity

sim_hold_for(q) —
time= n+q

Figure 4.4: An Example of Zero Time Polling.

4.5 Implementation Prototypes

Before arriving at the final simulation model a number of prototypes proved useful in
the construction and testing of major sections of the simulation. An overview of these

prototypes’ functionality is given below:

(a). Single Node : The initial prototype simulated a single processing node (MIPS

R3000) with the following functionality:

e The ability to generate read/write requests to memory.

e Accurate primary and secondary processor data caches (direct-mapped util-
ising write-though and write-back policies respectively).

e A main memory unit.

e Dummy MPbus entity which passed requests from the single processing node

to the memory unit.

(b). Four Incoherent Nodes and MPbus : After creating the first prototype the
resultant model of the MIPS address generation box and its associated caches were
available for use in the second prototype. The second prototype’s goal was to con-

nect four MIPS nodes together via a common bus. This entailed:

44

Modification of MPbus ports.

¢ Understanding and modelling the pipelined operation of the MPbus.

Defining bus arbitration protocols.

An upgrade to the processing node’s secondary level cache entity to allow it

to understand the arbitration protocol.

(c). Coherent Cluster : The next logical step in the prototype evolution was to make
the four processor cluster coherent according to the MESI snooping mechanism
used in DASH. This work took considerable time and is discussed in detail later
in this chapter. Other work undertaken for this prototype included the addition
of state data panels on all caches (to give hit/miss information dynamically as a
simulation animation progresses), implementing a bus ‘shut-down’ mechanism (to
stop the simulation when all processors finish processing their input trace files) and
updating the MPbus code to allow for the MESI protocol’s use of cache-to-cache

data transfers.

(d). Cluster & Directory Control Logic : The final simulation model developed
was that of a four cluster DASH multi-processor. This required that entities rep-
resenting the DC and RC boards be implemented. Also careful on-screen design
work was required to allow a meaningful layout of the double mesh interconnection
network. Unfortunately this simulation model was not fully completed although
much of the infrastructure was in place at the end of the project’s implementation

phase. The level of completion attained is discussed later in section 4.6.8

4.6 Final Entity Descriptions

This, the largest section of the chapter, offers a description of each of the main simulation
entities found in the final demonstration model.

The order in which entities are discussed follows closely the order in which they were
implemented in the various prototypes discussed above.

Except for illustrative fragments no Sim-++ code listings for entities are given here®.

3Readers wishing to examine the Sim++ body code of a typical entity are referred to Appendix E
which gives the code for the MPbus arbiter entity.

45

4.6.1 MIPS Address Generation Unit

The MIPS entity (as illustrated in Figure 4.5) acts as an address generation box for the
simulation. It communicates with the primary level cache via two HASE ports using
one of the three general purpose protocols used throughout the simulation for inter-entity
message passing.

We note at this point a convention used in the entity description diagrams (such as
Figure 4.5) throughout this section. Any port based communication is represented via
thin black lines connected to a port box (marked with a ‘p’ for a standard port and a
‘* for a HASE free port) whereas other communication (be it file I/O, state information
being written to the trace file or communication through global variables) is denoted by

a wide white arrow.

Bus arbiter control
infomation & output
trace file control

outbound pkts to

rimary cache
Input prioan

Trace File

inbound pkts from
primary cache

Figure 4.5: The MIPS Address Generation Entity.

Apart from the address generation role of the MIPS entity, its other responsibilities

include:

e Communication (via a global state variable) with the bus arbiter to indicate when
the processor has exhausted the input trace file. This is achieved by all processors
incrementing an integer counter when they have finished trace file processing. When
the bus arbiter entity sees that the counter value is equal to the number of simulated
processors the bus arbiter can stop. This artificial stopping of the arbiter is required
as otherwise the MPbus would keep creating simulation events (via a regular poll)

for ever and the simulation would never terminate.

e The writing of state information to the output trace file for later generation

of simulation timing diagrams. The processor state changes between IDLE, BUSY

46

and STOPPED and these changes of state must be reflected in the output trace file
to allow timing diagrams to be constructed. This is achieved via use of the HASE

dump_state() function at appropriate points in the Sim++ body code.

4.6.2 Primary Data Cache

Having defined the address generation mechanism the next entity to be created was the
primary data cache; this was a natural choice as it is the next component in the path
towards the cluster memory.

The primary cache was the first entity of any substance to be implemented. The
primary cache is direct-mapped and operates a write-through policy. Aside from these
DASH-dictated attributes, the demonstration tool cache was designed to allow the user
to redefinable the entity’s other operational parameters. For example, the cache entity
allows the user to specify the size of the cache (in 16-byte lines) and the delay associated

with a cache access.

Trace File Output
& Memory Array

Requests to 2nd
Level Cache

Pkts from N Status
MIPS E‘

Primary Data

Pkts from 2nd
Level Cache

User Definable
Parameters

Figure 4.6: The Primary Level Processor Cache Entity.

The primary cache entity is shown in Figure 4.6. We see that the unit has four
communication ports (two out, two in) and an on-screen display which chahges its text
value according to the outcome of the most recent access (it displays a two letter code
stating the access type and hit status. For example a read miss would display RM).

The data structure central to the operation of this entity is a HASE memory array

which represents the cache memory contents. Each line of this array holds a cache entry

47

VALID TAG oM 1 12 stoRep 34 SHARE
BIT BLOCK : VALUES : BIT

MOD
8IT

Figure 4.7: Primary/Secondary Cache Line Format.

(type t_caline struct) in the format of Figure 4.7.

This format is shared with the secondary cache unit (see below); the only difference
in use is that the primary cache never has need to use the share bit. On receipt of an
incoming packet a table lookup is performed and validity bit and tag checks are made. If
a hit occurs a delay is initiated before sending the result back to the MIPS entity. On a
miss the packet is referred (after the miss delay) to the secondary cache entity.

Throughout the simulation the cache’s state? (a value from an enumerated type
P_CACHE.STATE) is recorded in the output trace file. These values are used in the con-
struction of timing diagrams which show the state of the cache with respect to simulation

time.

4.6.3 Secondary Data Cache

Following the data path towards the cluster memory unit we next encounter the secondary
level processor cache. In terms of caching operation this entity is identical to that of the
primary cache unit. Once again the user can define cache size and latency through the
use of entity parameters.

However, this unit also hosts the snoopy-bus cache coherency logic and as such is
one of the most complicated units in the cluster implementation. In order to understand
the operation of the snooping mechanism it is also necessary to understand the operation
of the MPbus arbiter and its associated communication protocols. For this reason the

snoopy coherence mechanism will be discussed in the section describing the bus arbiter.

4.6.4 Node

The node (Figure 4.8) was the first composite entity encountered during simulation im-
plementation. The node entity consists of the MIPS address generation unit and its as-
sociated primary and secondary level caches. The node entity provides abstraction from
the processor cache level by showing a single entity on-screen from which one can observe

addresses which have ‘missed’ at both cache levels (or values being sent to memory as a

4 Appendix C includes a table detailing the state values used for each simulation entity

48

To Bus
Arbiter

From Bus
Arbiter

Port

To Bus
Arbiter

From Bus
Arbiter

Figure 4.8: Composite Node Entity.

consequence of a write-back) being issued across the MPbus.

This entity also demonstrates the concept of HASE ‘free-ports’. Notice that when
the simulation is run at the ‘node’ level of abstraction the links between the caches and
the MIPS address generator become internal to the node entity, however the ports
interfacing the node to the MPbus are still visible. These are actually the same ports
that connect the secondary processor cache to the bus. The ports are only defined within
the secondary cache entity and automatically propagate to the node level when entities
are grouped together. This propagation is forced on any ports which are ‘free’ (i.e. not
connected to another entity) at the time of the group operation. Therefore the designer
of a HASE simulation must be very careful when grouping entities together. He/she must
ensure that all ports not required to act as ‘free-ports’ are already connected to their peer
entities before the group operation is performed. If a mistake is made in this grouping it is
currently (version 5.5) émpossible to undo the group operation (this is a serious oversight

which needs rectifying in future releases of HASE).

4.6.5 Communication Issues.

At this point' we shall divert our attention from the operation of simulation entities in
order to look more closely at the communication that takes place on the links which
connect them. So far we have simply said that entities communicate by sending to, and
receiving from, ports which are connected by links. We shall now consider the format of
the data passed over these links.

When defining a simulation in HASE it is necessary to associate a packet type with

49

-
U RPRNER N
€

a link®. This packet is usually designed to reflect the communication task in hand.

The remainder of this section highlights:
e The three packet formats currently used within the DASH simulation.
e The rationale behind the packet design.

e The scope within which the various packet types are used within the simulation

model®.

Node Level Packets.

This is the most basic of the three formats (referred to in the Sim++ code as packet type
t_pl_struct) used in the DASH simulation. It was designed to carry address requests
from the MIPS address generator through the processor caches and on to the MPbus.

The packet contains the three fields illustrated in Figure 4.9.

Address Read/Write Inst/Data
int char([] char

Figure 4.9: Protocol P1 Structure.

The address field always carries the demanded/returned address. The second field
was initially designed simply to indicate whether the address issue was with respect to
a read or a write, however this field has become somewhat ‘overloaded’ and is now used
to pass a variety of control/polling information between the secondary level cache and
MPbus arbiter.

It would have been possible to define multiple packets types for this extra con-
trol/polling information however the new HASE interface method for specifying links
contains something of a flaw. In order to change the packet format used on any already
defined link the user must systematically delete every link in the simulation which will
carry the newly defined packet and then re-build all links in order for the packet format
changes to propagate down to the actual simulation links. This is a laborious task and
rather than pursue this line of development it was decided that an overloading of the

existing packet format would suffice.

5We note also that links can support multiple packet types although this facility was not used in the
DASH simulation.
8 Appendix B contains a scope map for the simulation packet types

50

The final field of this packet type indicates whether the address generated corresponds
to a data or instruction request. Although only the data access path is accurately modelled

in this simulation (see section 4.1.2) this field was built in for possible future use.

Cluster Level Packets

The second type of packet (type t_p2_struct) used within the simulation is pictured in
Figure 4.10. Once again we see the address, read/write and data/instruction fields as

featured in packet format t_p1_struct along side a new field device_id.

Address Read/Write Inst/Data Device ID
int char{] char int

Figure 4.10: Protocol P2 Structure.

This field reflects the fact that this protocol is used within the MPbus logic for routing
address requests within a cluster. When a packet reaches the MPbus it enters a multi-
processor environment for the first time. As such it needs to be identifiable as belonging
to a particular processor. When the bus arbiter receives a packet from one of its five input
ports (4 processor ports + 1 PCPU (Pseudo-CPU) port) it translates the t_pi_struct
packet into a t_p2_struct and assigns an integer label to the device_id field of the packet

reflecting the source of the request.

Inter-Cluster Level Packets

These packets are used at the highest level of abstraction and therefore must reflect the
scope of the entire DASH prototype — this means being able to identify not only an
individual processor but the cluster to which it belongs.

We shall see in later sections that the first two packet designs had fields ‘overloaded’
to add support for protocols that were not envisaged at the time of their design. To
avoid this situation occurring again the inter-cluster packet design includes three extra,

as yet unused fields, for future expansion. The inter-cluster packet format is shown in

Figure 4.11.

Address Read/Wirite Inst/Data Device 1D Cluster ID Reserved1 Reserved2 Reserved3
int char{) char int int char char : int

Figure 4.11: Protocol P3 Structure.

51

State Info -;
{panel & trace) —p F _
—p! F MP bus :
o F Arbitration | F
Stage
—>
from mipst —p{ F | from RC FIFO
from PCPU
tomipst 44— F nee
toDC
frommips2 —pf F] p
tomips2 — F MP bus
MPb Address Transfer
us
frommips3 —JP F Stage
to cluster
tomips3 4—| F l amory
i lust
from mips4 —P F fOr:; ::n t::y er
tomips4 € F
[P

MP bus
Data
Transfer
Stage

MMMy

Timing
Parameters

RitY

Figure 4.12: MPbus Composition.

4.6.6 MPbus

The MPbus is one of the most complex entities in the DASH simulation. It is responsible
for displaying a large amount of state information detailing the on-going operation of the
snoopy-bus protocol as well as carrying out the conventional tasks of bus arbitration,
address and data transfer.

In the early prototype DASH simulations the MPbus was represented by a single
icon and attempted to deal with all of the above functionality. This proved to be a very
complex entity with much scope for error in programming. Another disadvantage of this
‘single entity’ approach was that it presented a ‘black box’ view of the bus to the user.

It was decided that the bus would be better implemented as a series of entities,
each responsible for some part of the bus functionality. It seemed logical that these
divisions should follow the pipelined operation of the bus. This would give the user of the
simulation a better insight into the bus mechanisms used within DASH as well as acting
as a demonstration of the pipelining principle. The final MPbus entity is composed of

three lower level entities (shown in Figure 4.12)

52

Once again we can see the allocation of free and normal ports and the fact that user
definable parameters can be used to alter the timing characteristics of the pipeline stages.
A minimum bus transaction has a latency of seven bus cycles”. The composition of

these transaction cycles is:
1. Arbitration (1 cycle)
2. Address transfer (3 cycles)
3. Data Transfer (4 cycles)

We note at this point that the MPbus classifies transactions as being one of three
kinds — a cache transaction, a DMA transaction or an I/O transaction. Given the limited
time available for this project only the cache-based transactions were modelled.

Next we will identify the tasks performed by the three MPbus sub-entities.

MPbus Arbitration Entity

Arbitration of MPbus control is performed on a fair, round-robin basis and is performed
in a single bus cycle. The method used to implement this system in the DASH simulation

model had the following attributes:

e The use of ‘zero-time’ polling of bus masters (see section 4.4).

e The use of a protocol based on an overloaded t_p1l.struct packet format.
The arbitration protocol used is as follows:

(a). Poll Masters : Upon the start of a bus arbitration cycle the arbiter polls all bus
masters (4 secondary caches and PCPU/RC) to see if any require service. This
is done by calling po11.211() which sends a packet (in zero time) to all masters

containing a read/write field of value G (Get poll response).

(b). Masters Receive Poll : On receipt of the poll packet masters wishing to claim
the bus return a packet containing a read/write field value of Y (or N if they do

not require bus control this cycle) via function domp_g().

7A detailed set of timing diagrams for the MPbus can be found in [E.L92]

53

+s4 2ndlevel L
cache

2nd level .
cache

2ndievel |
cache

2nd level
cache

2nd level
cache

2nd level
cache

2nd level
cache

MPbus Arbiter MPbus Arbiter

(@) (b)

Next.in round-

robin cycle (Deferred) Send Data

2nd level 2nd leve! 2nd level 2nd level
cache cache cache cache

2nd level .. .4 2nd level
cache cache

Data

MPbus Arbiter MPbus Arbiter

() (d)

Figure 4.13: MPbus Arbitration Protocol.

(c). Arbiter Receives Votes : The arbiter counts the number of Yes votes returned.
If no masters require service the arbitration delay (1 cycle) is made before starting
to poll again. However if masters require service tﬁe arbiter selects which master to
grant access to via the function grant bus() (a round-robin method of allocation

i applies). This function call sends a permission packet (one with a read/write field

value of P) to the selected master.

(d). Master Receives Permission : Upon receipt of the permission packet the master
sends the address request to the arbiter using the standard t_pl_struct packet

format. The arbitration cycle starts again.

A typical arbitration cycle adhering to the description given above appears in Fig-
ure 4.13.

Next we shall consider another major role played by the MPbus arbiter entity — that
of co-ordinator for the snoopy-bus protocol. As the snoopy bus protocol is executed by
all snooping caches in the cluster there is a need for a central entity to collate snoop data
and present it in a meaningful format to the user of the simulation. Although this is
unrealistic in terms of the real architecture’s operation it offers the advantage of a central
control point for the snoopy protocol. Also it is possible to implement the protocol in

such a way that the user of the simulation would perceive the protocol to be running as

b4

in the original architecture. As long as this is possible we can justify the use of the bus
arbiter as a co-ordinating entity.

The snoopy-bus protocol used in the DASH simulation is identical to that of the actual
architecture. The protocol is the MESI Illinois protocol as outlined in [PP84]. We shall
examine the protocol in two sections. Firstly we will consider the coherency algorithm
itself, then the simulation based communication protocols which support its operation.

The flowcharts of Figure 4.14 detail the general strategy for reads and writes in the

DASH system. We note that a cache line may be in one of four states:
1. Invalid: Block does not contain valid data.

9. Exclusive-Unmodified: (Excl-Unmod) No other cache has this block. Therefore

the data in the block is consistent with main memory.

3. Shared-Unmodified: (Shared-Unmod) Some other caches may have this block.

Data in this block is once again consistent with main memory.

4. Exclusive-Modified: (Excl-Mod) No other cache has this block. Data in the block

has been modified locally and is therefore inconsistent with main memory.

From Figure 4.14 we note:

e The use of cache-to-cache transfers. Although cache-to-cache transfers do nothing
to reduce the latency of local memory they do allow sharing of data from remote
clusters between processor caches. This means the set of local secondary level

processor caches act as a cluster cache for remote memory.

e In section 3.2 we noted that snoopy-bus protocols can be classified by their use
of either a write-broadcast or write-invalidate approach to the handling of
- stale data within the system. The MESI Illinois protocol uses awrite-invalidate

scheme.

In the DASH simulation the flowchart algorithms of Figure 4.14 are implemented in
the locality of the secondary processor caches as in the real system. However the bus
arbiter entity is also involved in the coherency mechanism. The protocol® supporting the

MESI snooping protocol in the DASH simulation is as follows:

8This protocol is once again executed in ‘zero-time’.

55

(@). (b)

tut miss
hit mss

100t block " Shared? select block to
Read Cache select blocto [y ' replace
teplace
send
invalidate
o
_,{__— yes Modified?
[yns Modified? [
. write in cache and wiite-back
write-back set modified
[
[

i
3
read block into
read blockinto cache and send
cache invalidate

- w-

set status set status

share- exd-unmod

unmod

Figure 4.14: MESI Illinois Protocol (a).Read, (b).Write

(a). Reception of Read/Write Request : The processor which was granted the bus
at the last arbitration phase transmits its address request to the bus arbiter entity.

This transmission is of a standard t_p1_struct packet.

(b). Broadcast of Request : The arbiter receives the read /write request and immedi-
ately broadcasts the message back on the bus (the broadcast is implemented as four
separate messages, one per processor, sent in zero time). This special message is an
overloaded t_p1_struct type packet containing an ‘r’ or ‘w’ in the instruction/data

field and a ‘S’ in the read/write field. The ‘S’ indicates a snoop-probe message.

(c). Execute MESI algorithm : On receipt of the snoop-probe the secondary caches
look up the appropriate line in their caches and execute the MESI algorithm. This
will adjust the shared /modified bits according to the address in the received packet.

The results of this snoop are then transmitted back to the bus arbiter®.

(d). Collate Results The arbiter gathers the response packets and generates a text

based description of the snoop outcome which is displayed via a ‘snoop panel’ on

®There are four possible response packets/ For the sake of brevity these are not given here but details
regarding the packet format of this response are given in Appendix B.

56

the arbiter’s icon (Figure 4.15 below). The panel has four information sources: *

1. The display on the left-hand side of the panel changes with respect to the bus

master granted access to the bus (an arrow indicates the current master).

9. The information box at the top of the panel displays whether an access is a

read, write or write-back.

3. The small information box at the bottom of the display indicates where the
request’s result will come from. This can be either cluster memory of another

cache (because of the MES]I protocol’s use of cache-to-cache transfers).

4. The most complex part of the snoop information panel is the four line display
in the centre of the icon. T hese lines give a summary of the snoop activity
that occurs in each of the second levels caches. For example if a cache holds
an exclusive-unmodified copy of a piece of data and another processor then
reads the same item, the display line for this cache would read SU-(EU). This
code means the new cache line bit settings (after the snoop activity) reflect a
shared-unmodified state. The value in brackets represents the ‘before’ status
of the cache line (i.e. exclusive-unmodified).

The panel is also used to display the message INVALIDATION SENT TO ALL

CACHES when a write-invalidate action occurs.

- -

[s

— — - -
R el

Figure 4.15: Snoopy-Bus Protocol Information Panel.

The snoop stages previously outlined can be seen in Figure 4.16.
The description given so far covers the most common cases of snoopy-action. However

we must still examine the less frequent operation of an invalidation. This can be sum-

57

Granted Bus
Acces so
transmit

2nd lovel
cache

2nd level 2nd level 2nd level

cache

2nd fovel
cache

2nd level |,

a3
53

2nd level

cache 3\ cache

0

“S'noop

MPbus Arbiter

MPbus Arbiter

@) (b)

execute MESt
algorithm

2nd fevel
cache

2nd level
cache

2ndlevel
cache

2nd level
cache

2nd lavel 2nd level 2ndevel
cache cache cache

SRS

Gather results
of snoop and

(d)

Figure 4.16: Zero Time Protocol for MESI Snooping Algorithm.

marised as follows:

1. The bus arbiter receives a write request.

2. The address to be written is broadcast with an invalidation signal to all caches

except the one making the write.

3. Caches receiving the invalidate packet check their contents for a match of address

with the requested invalidation. If a match is found the caches appropriate valid bit

is reset.

The invalidation mechanism is illustrated in Figure 4.17

The final function performed by the MPbus arbiter entity is that of simulation shut-
down. During normal operation the bus continually polls masters checking for bus access
requests. This polling continues even when each of the processors has exhausted its in-
put trace file the arbiter will continue this cycle. To avoid the arbiter generating these
poll events forever a global simulation variable is used to control shutdown. After each
processor in the system exhausts its input file a variable shut_down is incremented. At
the start of each bus arbitration cycle a check is made to see if the value of shut_down is

equal to the total number of processors in the simulation. If this test returns true then

58

Granted Bus Holds X Helds X

Acces so (shared- (shared- X Invalidated X Invalidated
transmit unmod) unmod)

Write Addr. X

“I'nvalidate

MPbus Arbiter

MPbus Arbiter

(@) (b)

Figure 4.17: Invalidation Mechanism Used in DASH Simulation.

the entity exits its main body-code loop and no more simulation events are placed in the

event queue by the bus arbiter.

MPbus Address Transfer Entity

The next section of the MPbus to be examined is the address transfer entity. This entity
is responsible for simulating the 4 bus cycle delay present in the address transfer stage

of the actual architecture.,

The operation of the address transfer unit is described below:

Arbiter/Address Transfer Entity Handshake : When the arbiter has finished its
operational cycle (i.e. made the processing delay of 1 bus cycle) it needs to send the
requested address details to the address transfer unit. This should only be done if
the address transfer unit is idle. A simple protocol to test the status of the address

transfer entity is used as follows:

1. The bus arbiter sends a probe packet to the address transfer unit and blocks

waiting for a response.

2. The address transfer unit (when ready to accept a data packet) examines its
input port for a probe message. On finding a probe it sends a permission

packet back to the arbiter.

3. The arbiter now sends its data, packet and continues its operation.

This handshake protocol is shown in Figure 4.18.

Directing Data Packet : After the handshake phase the address transfer unit decides
whither the address request is bound. This can be either the cluster memory unit

or, in certain cases of the MESI protocol, another cache. The packet is directed

59

R TN R h (]

Probe (then block)

Address
Transfer
Entity

Bus Arbiter
Entity

{when idle) send permission

send data (unblock)

Figure 4.18: Handshake Protocol Used Between MPbus oy,

ot

toward the appropriate output port. Following this the operation., delay of the

address transfer phase is simulated and the address transfer cvelo (hey po ot

MPbus Data Transfer Stage

The data transfer entity returns request results to the issuing Processor after they e

been processed. The same handshake protocol used between the arbiter and addrone

transfer entities is used to co-ordinate incoming and outgoing packets. Thi. entity tukes

its input from the cluster memory unit or address transfer unit (the lattor indicating

that the data has come via a cache-to-cache transfer). The operational delay of the a1,

transfer phase is now simulated. Finally, on examining the input data packet s p2.dev 1d

field the destination node is identified and the data forwarded appropriately. The data

transfer cycle now restarts,

4.6.7 Cluster Memory

The cluster memory is relatively simple in design. Because the simulation js only cou-
cerned with modelling the effects of read /writes throughout the system (and not the
contents of memory locations) no actual storage needs to be modelled other than that
present in the processor caches (and in these only addresses need be stored}. Therefore

the operation of the memory unit is as follows:

L. An incoming packet is taken from the in-bound port.
2. The packet is classified as read /write

3. The on-screen memory state information is updated.
4. The memory delay is simulated

9. The ‘result’ packet is forwarded to the data transfer entity.

60

B e)

4.6.8 RC Board

Due to reasons explained below (in section 4.7) the implementation of the inter-cluster

communication logic is only partially completed. Therefore the discussion of the DC and
RC board components will be limited to that of the desigy work undertaken and the
implementation work completed so far.

The RC board consists of three components - the reply controller. the PCPU and the

request/reply Y-dimension of the interconnection network.

The PCPU and reply controller each have 2, FIFO connecting them to the Y-hound
inter-connection communication logic (see Figure 3.9 for details). These FIFOs have
been implemented and are identical for all DC and RC board cases. They aperate as
a simple buffering mechanism and utilise the handshaking protocol used 1o connect the
MPbus components together to connect them to neighbouring entities. The FIFOs are
uni-directional and feature one input and one output port.

The PCPU is not yet fully implemented. As in the original DASH architecture the
PCPU will closely imitate the behaviour of a processing node. As this is the case it i
envisaged that a large proportion of the secondary processor cache Sim++ code could be
reused when implementing this entity.

The reply controller is also similar in structure to a, secondary processor cache in that
it is required to snoop on the MPbus. Internally the reply controller cy rrently has a HASE
memory array designed to hold the information necessary to track remote requests. A
counter is also featured for each table entry to act as a remote write-request invalidation
counter. Apart from this internal data store and the entities communication links the
reply controller is currently otherwise unimplemented.

The highest level of abstraction in the DASH simulation features four DASH clusters.
This number of clusters was decided upon because of screen space limitations and the
extra complexity of working with HASE templates (a HASE template allows an entity to
be reproduced across a variable size interconnection network - see [PHV95] for details).
Having a fixed size interconnection network made the task of implementing the inter-
cluster routing mechanisms relatively simple.

After the final screen layout had been performed each routing entity (in the case of
the RC board the request/reply logic appertaining to the Y-dimension of the intercon.
nection network) had assigned to it a state variable clus_id. This value is unique for

all clusters. It is envisaged that a general purpose routing handler could simply direct

61

messages to other clusters by selecting a - . -
g y g a hard-coded TFanstission path via 4 switch

statement according to the destination clus_iq value in the packer 1o, | Foorted
< Yo teng,

4.6.9 DC Board

The DC board consists of three major co SN :
J mponents. These are the pertariatice Mictar,

directory controller and request/reply logic for the X-dimension of 1} HLETCOn Lo o

network. The first of these components, the performance monitor, i. BOt considered
our simulation (its original purpose was to aid analysis of the DA prototypics

The X-dimension interconnection network logic is in an identjca SGte 10 gt of e
Y-dimension logic described above.

The directory controller entity is currently in much the same state ag 1}, reply con

troller having been defined in terms of the HASE interface but lacking any req substunce
in Sim++ functionality. All communication ports and links have beey defined and ap
internal HASE memory array has been set up to represent the directory memory. ['he
bus access required by the directory controller could be implemented by reusing the |

=

access code found in the secondary processor cache.

4.7 Completion Status

As noted in the description of the DC and RC boards the simulation is not yet fully imple-
mented, this is largely due to a combination of time-constraints and problems encountered
during the project lifetime.

One of the main problems was the underestimation of the time required to become
familiar with HASE and Sim+4. This was initially estimated to take two to three weeks
of project development time however in actual fact the time taken was close to size weeks.

Other problems encountered included:

e Coding bugs in some of the HASE menus (e.g. it was possible to redefine primitive
data types from within HASE which rendered the HASE generated entity source
code useless). These problems were fixed by Pat Heywood of the HASE project.

e Being confronted with the somewhat cryptic error messages generated by Object-
Store. Often these could be trapped back to the HASE error handler routine whereby
a fix could be initiated. However on several occasions experimental databases were

rendered useless and a full rebuild of the data contained within them was required.

62

&
i mm:mi:s»ﬁmmﬁw%i

¢ Another problem encountered was that of server load. A« (10 HASE oy o
L ASE svstem wis

running on a shared ObjectStore server there were Corta; - (.
SHAM periods duarine anple

mentation that performance degraded very badly thus 1ukiy. ALY el
= i) LIPS §

difficult.

DradToss

e An interesting problem encountered was that there Were 1o provion.

.3
IS SN

lations in existence that had been created using the new HASE interfac.

Hw R RXN

of this HASE project management was dealt with on ap ad-hoe busis whyy oo

resulted in the reworking of an entities implementation ONCe eXpericnce wpl, 1]
- 3 i the

system had been gained.

The problems listed above all contributed to project timetable slippage. hawever 1),..

major problem encountered was that of ObjectStore database degradation. Over 1y
ObjectStore databases would grow to a very large file size (this has recently heey 1. o
to a HASE routine responsible for garbage collection). This problem is currently by
fixed by the HASE development team. Other problems as yet untraced resulted in corpap
data being entered into the simulation database. This rendered later simulation prototy e
useless. The only way around this problem was to rebuild the database from scratch
This is a very time consuming process and future releases of HASE need to address the
current requirement for a mechanism independent of ObjectStore to allow databases to
be reconstructed automatically.

We note that this database reconstruction was not a problem with older ADF based
HASE simulations where the C++ ADF could be recompiled resulting in the generation

of a new ObjectStore database.

63

Appendix B

DASH Simulation Communication

Protocol Summary.

B.1 Packet Formats

This section illustrates the three packet formats used throughout the DASH simulation.

Details regarding the design of these packet formats are given in section 4.6.5.

Address Read/Write Inst/Data
int charf(] char

Figure B.1: Packet (P1) Structure Diagram.

Address Read/Write Inst/Data Device iD
int char([] char int

Figure B.2: Packet (P2) Structure Diagram.

Address Read/Write Inst/Data Device ID Cluster 1D Reserved1 Reserved2 Reserved3
int char{]) char int int char char int

Figure B.3: Packet (P3) Structure Diagram.

B.2 Protocol Message Definitions

Table B.1 lists the field values used for signalling information in the various ‘zero time’

protocols used within the simulation.

79

Read/Write | Inst/Data | Description

r unused Address to read

w unused Address to write

u unused Update (write-Back)

G unused Probe to change bus master

P unused Permission to send granted

Y unused Positive Probe Response (ACK)

N unused Negative Probe Response (NAK)

S R Snoop Probe (read)
W Snoop Probe (write)

I unused Snoop Response - Invalid

E U Snoop Response - Excl-Unmod
M Snoop Response - Excl-Mod

S U Snoop Response - Shared-Unmod

Table B.1: Zero Time Protocol Field Codes.

B.3 Packet Scope Map

Figure B.4 offers a ‘packet format’ map detailing the use of the various packet types across

current simulation entity links.

Cluster
Directory Controfler
Reply [~
RC FIFO Y-dim Y1
P e f router >
Req. P
/ NATT e FIFO Y-dim Y1
: i Ve router >
Nods B K MPEus /
ups tly Primary Data s Sacondary > / : Req, >
Address Cache Data Cache ﬂ Bus ‘ FiFO Y-dim X1
Generation [—| [Arbitration H vouter —)
\ f Sage [~V lp oo
Req. [—P
MIPS | N y ? o I e
Addr Primary Data Secondary Y H rou! Bl /\r
oss Cache Data Cache X N : t
Generation ' [— 11 \ H
Bus Address X
Transfer s
Node Stage H
Ar:; » Primary Data b Secondary
Generation Cache Data Cache i Glustor M
. - Cluster Mermory
Node Bus Data
MIPS = Primary Data > Sacondary Transter 4
Addrass Cache Data Cache Stage
Generation [—

Figure B.4: Scope Map of Packet Use in Simulation.

80

The Sitanford DASH Muitiprocessor

Motivation.

e Project started at a time when no large-scale shared memory
multiprocessors with cache coherency existed.

e Single address space should facilitate ease of programmability.

e Desire to use hundreds of low-cost processors in coherent
multiprocessor.

o The DASH architecture was therefore initiated as a feasibility study.

e Since its inception other architectures provide similar facilities

¢ For example:

e The KSR-1

e IEEE SCI (Scaleable coherent Interface)

Cache-Coherency Mechanisms.

e In DASH there are two mechanisms employed for ensuring cache
coherency:
1. Snoopy-Bus
¢ Used within processing ‘clusters’
e Snoopy is based on broadcast medium (bus) so scalability
limited. - bus saturates after few processors added
(limited bus/snooping bandwidth).
2. Directory Based
e In order to overcome the

processor limitations enforced

by the snoopy-bus based protocol a second coherency
mechanism based around a directory (dmetory based
mechanisms actually predate snoopy mechanisms and

were to an extem redi scov red’ for DASH)

i between clusters.

Hardware Topology

e So, at most abstract level:-

o Set of processing clusters (each with several CPU’s) connected double
mesh interconnection network:
¢ ‘S’ for sending remote memory requests.
e ‘R’ for receiving requests.
¢ Cluster based on Silicon Graphics 4D/340 (itself a small scale
multiprocessor), allowed for rapid development of cluster hardware
(i.e. most of work already done).

(N
Processor Processor
1st Level 1st Level .
Cache < cache Directory &
2nd Level o Lover Intercluster
Cache Interface

Cluster

 Finally, there exists within this department a HASE based Simulation
of the DASH architecture which helps demonstrate the coherency
mechanisms used.

